Integration of machine learning with neutron scattering for the Hamiltonian tuning of spin ice under pressure
Quantum materials research requires co-design of theory with experiments and involves demanding simulations and the analysis of vast quantities of data, usually including pattern recognition and clustering. Artificial intelligence is a natural route to optimise these processes and bring theory and e...
Guardado en:
| Autores principales: | Samarakoon, Anjana, Tennant, David Alan, Ye, Feng, Zhang, Qiang, Grigera, Santiago Andrés |
|---|---|
| Formato: | Articulo |
| Lenguaje: | Inglés |
| Publicado: |
2022
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/154709 |
| Aporte de: |
Ejemplares similares
-
Machine-learning-assisted insight into spin ice Dy2Ti2O7
por: Samarakoon, Anjana M., et al.
Publicado: (2020) -
Neutron scattering /
Publicado: (1986) -
Neutron scattering /
Publicado: (1979) -
Thermal neutron scattering /
por: Egelstaff, P. A. (Peter A.)
Publicado: (1965) -
Experimental neutron scattering /
por: Willis, Bertram. B. T. M. (Bertram Terence Martin)
Publicado: (2009)