Application of a Bayesian Semi-supervised Learning Strategy to Network Intrusion Detection
Supervised learning classifiers have proved to be a viable solution in the network intrusion detection field. In practice, however, it is difficult to obtain the required labeled data for implementing these approaches. An alternative approach that avoids the need of labeled datasets consists of usin...
Guardado en:
| Autores principales: | Catania, Carlos Adrián, García Garino, Carlos, Bromberg, Facundo |
|---|---|
| Formato: | Objeto de conferencia |
| Lenguaje: | Inglés |
| Publicado: |
2010
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/152809 http://39jaiio.sadio.org.ar/sites/default/files/39jaiio-asai-16.pdf |
| Aporte de: |
Ejemplares similares
-
Machine Learning Classifiers Selection in Network Intrusion Detection
por: Becci, Graciela, et al.
Publicado: (2021) -
Towards efficient intrusion detection systems based on machine learning techniques
por: Catania, Carlos, et al.
Publicado: (2010) -
Combining semi-supervised and active learning to recognize minority senses in a new corpus
por: Cardellino, Cristian Adrián, et al.
Publicado: (2021) -
Combining semi-supervised and active learning to recognize minority senses in a new corpus
por: Cardellino, Cristian Adrián, et al.
Publicado: (2021) -
A framework for implementing a Distributed Intrusion Detection System (DIDS) with interoperabilty and information analysis
por: Davicino, Pablo, et al.
Publicado: (2011)