A comparison of small sample methods for handshape recognition
Automatic Sign Language Translation (SLT) systems can be a great asset to improve the communication with and within deaf communities. Currently, the main issue preventing effective translation models lays in the low availability of labelled data, which hinders the use of modern deep learning models....
Guardado en:
| Autores principales: | Quiroga, Facundo Manuel, Ronchetti, Franco, Cornejo Fandos, Ulises Jeremías, Ríos, Gastón Gustavo, Dal Bianco, Pedro Alejandro, Hasperué, Waldo, Lanzarini, Laura Cristina |
|---|---|
| Formato: | Articulo |
| Lenguaje: | Inglés |
| Publicado: |
2023
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/152121 |
| Aporte de: |
Ejemplares similares
-
Recognizing Handshapes using Small Datasets
por: Cornejo Fandos, Ulises Jeremias, et al.
Publicado: (2019) -
A Study of Convolutional Architectures for Handshape Recognition applied to Sign
Language
por: Quiroga, Facundo, et al.
Publicado: (2017) -
Handshape recognition for Argentinian Sign Language using ProbSom
por: Ronchetti, Franco, et al.
Publicado: (2016) -
Gloss-free Argentinian Sign Language Translation with pose-based deep learning models
por: Dal Bianco, Pedro Alejandro, et al.
Publicado: (2024) -
Distant Supervised Construction and Evaluation of a Novel Dataset of Emotion‑Tagged Social Media Comments in Spanish
por: Tessore, Juan Pablo, et al.
Publicado: (2021)