Sistema de Archivos Paralelos con Aplicaciones de Machine Learning
Se propone la investigación, análisis y evaluación del impacto de aplicaciones del tipo Machine Learning en un sistema de archivos paralelos, a nivel de rendimiento y uso de recursos. Para tal motivo se plantea el estudio del sistema de archivos paralelo BeeGFS, como infraestructura, y el uso de apl...
Guardado en:
| Autores principales: | , , , |
|---|---|
| Formato: | Objeto de conferencia |
| Lenguaje: | Español |
| Publicado: |
2022
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/149420 |
| Aporte de: |
| Sumario: | Se propone la investigación, análisis y evaluación del impacto de aplicaciones del tipo Machine Learning en un sistema de archivos paralelos, a nivel de rendimiento y uso de recursos. Para tal motivo se plantea el estudio del sistema de archivos paralelo BeeGFS, como infraestructura, y el uso de aplicaciones de Machine Learning como herramienta de benchmark para obtener los resultados necesarios y posterior análisis. Los sistemas de archivos paralelos nos permiten incrementar el rendimiento de los “File Servers” que requieren de mayor capacidad de respuesta a operaciones de lectura y escritura por accesos recurrentes y concurrentes a datos, donde los sistemas de archivos convencionales como “Network File System” no pueden satisfacer esta capacidad, entre otras grandes ventajas. |
|---|