Accurate summation of the perturbation series for periodic eigenvalue problems
We show that algebraic approximants prove suitable for the summation of the perturbation series for the eigenvalues of periodic problems. Appropriate algebraic approximants constructed from the perturbation series for a given eigenvalue provide information about other eigenvalues connected with the...
Guardado en:
| Autores principales: | , |
|---|---|
| Formato: | Articulo |
| Lenguaje: | Inglés |
| Publicado: |
2001
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/145231 |
| Aporte de: |
| Sumario: | We show that algebraic approximants prove suitable for the summation of the perturbation series for the eigenvalues of periodic problems. Appropriate algebraic approximants constructed from the perturbation series for a given eigenvalue provide information about other eigenvalues connected with the chosen one by branch points in the complex plane. Such approximants also give those branch points with remarkable accuracy. We choose Mathieu's equation as illustrative example. |
|---|