Evaluation of entanglement measures in spin systems with the random phase approximation

We discuss a general formalism based on the mean field plus random phase approximation (RPA) for the evaluation of entanglement measures in the ground state of spin systems. The method provides a tractable scheme for determining the entanglement entropy as well as the negativity of finite subsystems...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Canosa, Norma Beatriz, Matera, Juan Mauricio, Rossignoli, Raúl Dante
Formato: Articulo
Lenguaje:Inglés
Publicado: 2011
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/145203
Aporte de:
Descripción
Sumario:We discuss a general formalism based on the mean field plus random phase approximation (RPA) for the evaluation of entanglement measures in the ground state of spin systems. The method provides a tractable scheme for determining the entanglement entropy as well as the negativity of finite subsystems, which becomes analytic in the case of systems with translational invariance, in one or D dimensions. The approach improves as the spin increases, and also as the interaction range or connectivity increases. Illustrative results for different types of entanglement entropies (single site, block and comb) in the ground state of a small spin lattice with ferromagnetic type XY couplings in a transverse field are shown and compared with the exact numerical result. Effects arising from symmetry breaking at the mean field level are also discussed.