A Geometrical Approach to Indefinite Least Squares Problems
Given Hilbert spaces ℋ and K , a (bounded) closed range operator C:H→K and a vector y∈K , consider the following indefinite least squares problem: find u∈ℋ such that 〈B(Cu−y),Cu−y〉=min x∈ℋ〈B(Cx−y),Cx−y, where B:K→K is a bounded selfadjoint operator. This work is devoted to give necessary and suffici...
Guardado en:
| Autores principales: | Giribet, Juan Ignacio, Maestripieri, Alejandra Laura, Martínez Pería, Francisco Dardo |
|---|---|
| Formato: | Articulo |
| Lenguaje: | Inglés |
| Publicado: |
2009
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/141580 |
| Aporte de: |
Ejemplares similares
-
A geometrical approach to indefinite least squares problems
por: Giribet, J.I., et al. -
A geometrical approach to indefinite least squares problems
Publicado: (2010) -
Weighted generalized inverses, oblique projections, and least-squares problems
por: Corach, G., et al. -
Weighted generalized inverses, oblique projections, and least-squares problems
Publicado: (2005) -
Indefinite least-squares problems and pseudo-regularity
por: Giribet, Juan Ignacio, et al.
Publicado: (2015)