TinyML for Small Microcontrollers

This paper describes the progress made in the context of a research and development project on machine learning techniques and algorithms applied to small microcontrollers. The beginning of the development of EmbedIA, a machine learning framework for microcontrollers, is presented. The experiments c...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Estrebou, César Armando, Saavedra, Marcos David, Adra, Federico, Fleming, Martín
Formato: Objeto de conferencia
Lenguaje:Inglés
Publicado: 2022
Materias:
IoT
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/140652
Aporte de:
Descripción
Sumario:This paper describes the progress made in the context of a research and development project on machine learning techniques and algorithms applied to small microcontrollers. The beginning of the development of EmbedIA, a machine learning framework for microcontrollers, is presented. The experiments carried out comparing the proposed framework with other similar frameworks such as Tensorflow Lite Micro, μTensor and EloquentTinyML show an important advantage with respect to memory and inference time required by small microcontrollers.