On a Definition of a Variety of Monadic ℓ-Groups

In this paper we expand previous results obtained in [2] about the study of categorical equivalence between the category IRL 0 of integral residuated lattices with bottom, which generalize MV-algebras and a category whose objects are called c-differential residuated lattices. The equivalence is give...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Castiglioni, José Luis, Lewin, Renato A., Sagastume, Marta Susana
Formato: Articulo
Lenguaje:Inglés
Publicado: 2013
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/139814
Aporte de:
Descripción
Sumario:In this paper we expand previous results obtained in [2] about the study of categorical equivalence between the category IRL 0 of integral residuated lattices with bottom, which generalize MV-algebras and a category whose objects are called c-differential residuated lattices. The equivalence is given by a functor K∙, motivated by an old construction due to J. Kalman, which was studied by Cignoli in [3] in the context of Heyting and Nelson algebras. These results are then specialized to the case of MV-algebras and the corresponding category MV∙ of monadic MV-algebras induced by “Kalman’s functor” K∙. Moreover, we extend the construction to ℓ-groups introducing the new category of monadic ℓ-groups together with a functor Γ♯, that is “parallel” to the well known functor Γ between ℓ and MV-algebras.