Application of Machine Learning Approaches to Identify New Anticonvulsant Compounds Active in the 6 Hz Seizure Model
Epilepsy is the second most common chronic brain disorder, affecting 65 million people worldwide. According to the NIH’s Epilepsy Therapy Screening Program, evaluation of potential new antiepileptic drug candidates begins with assessment of their protective effects in two acute seizure models in mic...
Guardado en:
| Autores principales: | Goicoechea, Sofía, Sbaraglini, María Laura, Chuguransky, Sara Rocío, Morales, Juan Francisco, Ruiz, María Esperanza, Talevi, Alan, Bellera, Carolina Leticia |
|---|---|
| Formato: | Objeto de conferencia |
| Lenguaje: | Español |
| Publicado: |
2019
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/139079 |
| Aporte de: |
Ejemplares similares
-
How Can Network-Pharmacology Contribute to Antiepileptic Drug Development?
por: Di Ianni, Mauricio Emiliano, et al.
Publicado: (2014) -
Application of target repositioning and in silico screening to exploit fatty acid binding proteins (FABPs) from Echinococcus multilocularis as possible drug targets
por: Bélgamo, Julián Alberto, et al.
Publicado: (2020) -
Synthesis and biological evaluation of new antiseizure compounds derived from valproic acid
por: Garofalo, Federico Mariano, et al.
Publicado: (2023) -
Cascade ligand- and structure-based virtual screening to identify new trypanocidal compounds inhibiting putrescine uptake
por: Alberca, Lucas Nicolás, et al.
Publicado: (2018) -
Understanding antiepileptic drugs : guiding you through the maze of options /
por: Pohlmann-Eden, Bernd, et al.
Publicado: (2014)