A generalized Hill-Wheeler ansatz

The Hill-Wheeler ansatz for the total wave function, within the Generator Coordinate Method framework, is generalized by recourse to the theory of distributions. The ensuing approach allows one to obtain a basis that spans the collective subspace, without having to deal explicitly with the eigenvect...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Nuñez, J, Esebbag, C, Martín, María Teresa, Rebollo Neira, Laura, Plastino, Ángel Luis
Formato: Articulo
Lenguaje:Inglés
Publicado: 1984
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/138594
Aporte de:
Descripción
Sumario:The Hill-Wheeler ansatz for the total wave function, within the Generator Coordinate Method framework, is generalized by recourse to the theory of distributions. The ensuing approach allows one to obtain a basis that spans the collective subspace, without having to deal explicitly with the eigenvectors and eigenvalues of the overlap kernel. Applications to an exactly soluble model and anharmonic vibrations illustrate the present treatment.