Electrochemical performance comparison of MWCNTs/Ni (OH)₂ composite materials by two preparation routes
Carbon materials are used to improve the nickel hydroxide electrode capacity in rechargeable alkaline batteries. Herein, we present the preparation of multiwall carbon nanotubes/nickel hydroxide composites (MWCNTs/Ni (OH)₂) by two different routes. The first method consists of the direct incorporati...
Guardado en:
| Autores principales: | , , |
|---|---|
| Formato: | Articulo |
| Lenguaje: | Inglés |
| Publicado: |
2017
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/138395 |
| Aporte de: |
| Sumario: | Carbon materials are used to improve the nickel hydroxide electrode capacity in rechargeable alkaline batteries. Herein, we present the preparation of multiwall carbon nanotubes/nickel hydroxide composites (MWCNTs/Ni (OH)₂) by two different routes. The first method consists of the direct incorporation of MWCNTs in the active material, and the second is based on the hydrothermal synthesis of β-nickel hydroxide, where MWCNTs are added to the precursor solutions. The electrochemical properties of the prepared positive electrodes containing MWCNTs/Ni (OH)₂ composites are studied. Electrochemical results indicate that the active material with MWCNTs incorporated before the hydrothermal synthesis is capable of delivering a higher discharge capacity and exhibits a better reversibility than those composites prepared with MWCNTs after the hydrothermal route. |
|---|