Thermal stability analysis of coronal loops
The coronal loops confine a low density (n=10¹⁰ cm⁻³) and hot plasma (T=10⁶ K), whose ends interact with the much denser and hotter photospheric fluid. The linear stability of the dynamical and thermal equilibria of the coronal plasma is analyzed. A formalism based on methods of irreversible thermod...
Guardado en:
| Autores principales: | , , |
|---|---|
| Formato: | Articulo Comunicacion |
| Lenguaje: | Español |
| Publicado: |
1987
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/137617 |
| Aporte de: |
| Sumario: | The coronal loops confine a low density (n=10¹⁰ cm⁻³) and hot plasma (T=10⁶ K), whose ends interact with the much denser and hotter photospheric fluid. The linear stability of the dynamical and thermal equilibria of the coronal plasma is analyzed. A formalism based on methods of irreversible thermodynamics was used, which systematically builds up (whenever it is possible) a variational principle for studying the stability. The stability conditions derived in this work are compared with results available in the literature, which were obtained by standard stability methods. |
|---|