A Hierarchical Two-tier Approach to Hyper-parameter Optimization in Reinforcement Learning
Optimization of hyper-parameters in real-world applications of reinforcement learning (RL) is a key issue, because their settings determine how fast the agent will learn its policy by interacting with its environment due to the information content of data gathered. In this work, an approach that use...
Guardado en:
| Autores principales: | Barsce, Juan Cruz, Palombarini, Jorge, Martínez, Ernesto |
|---|---|
| Formato: | Articulo |
| Lenguaje: | Inglés |
| Publicado: |
2020
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/135049 https://publicaciones.sadio.org.ar/index.php/EJS/article/view/165 |
| Aporte de: |
Ejemplares similares
-
A Hierarchical Two-tier Approach to Hyper-parameter Optimization in Reinforcement Learning
por: Barsce, Juan Cruz, et al.
Publicado: (2019) -
Applications of combinatorial optimization
Publicado: (2010) -
Integer and combinatorial optimization /
por: Nemhauser, George, et al.
Publicado: (1999) -
Optimal design techniques for distributed parameter systems
por: Banks, H.T., et al. -
Optimal design techniques for distributed parameter systems
Publicado: (2013)