A Hierarchical Two-tier Approach to Hyper-parameter Optimization in Reinforcement Learning

Optimization of hyper-parameters in real-world applications of reinforcement learning (RL) is a key issue, because their settings determine how fast the agent will learn its policy by interacting with its environment due to the information content of data gathered. In this work, an approach that use...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Barsce, Juan Cruz, Palombarini, Jorge, Martínez, Ernesto
Formato: Articulo
Lenguaje:Inglés
Publicado: 2020
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/135049
https://publicaciones.sadio.org.ar/index.php/EJS/article/view/165
Aporte de:

Ejemplares similares