Experimental and DFT characterization, antioxidant and anticancer activities of a Cu(II)–irbesartan complex: structure–antihypertensive activity relationships in Cu(II)–sartan complexes

The coordination compound of the antihypertensive ligand irbesartan (irb) with copper(II) (CuIrb) was synthesized and characterized by FTIR, FT-Raman, UV–visible, reflectance and EPR spectroscopies. Experimental evidence allowed the implementation of structural and vibrational studies by theoretical...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Islas, María Soledad, Luengo, Alicia, Franca, Carlos Alberto, Griera Merino, Mercedes, Calleros, Laura, Rodríguez-Puyol, Manuel, Lezama, Luis, Ferrer, Evelina Gloria, Williams, Patricia Ana María
Formato: Articulo
Lenguaje:Inglés
Publicado: 2016
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/134050
Aporte de:
Descripción
Sumario:The coordination compound of the antihypertensive ligand irbesartan (irb) with copper(II) (CuIrb) was synthesized and characterized by FTIR, FT-Raman, UV–visible, reflectance and EPR spectroscopies. Experimental evidence allowed the implementation of structural and vibrational studies by theoretical calculations made in the light of the density functional theory (DFT). This compound was designed to induce structural modifications on the ligand. No antioxidant effects were displayed by both compounds, though CuIrb behaved as a weak 1,1-diphenyl-2-picrylhydrazyl radical (DPPH·) scavenger (IC₅₀ = 425 μM). The measurements of the contractile capacity on human mesangial cell lines showed that CuIrb improved the antihypertensive effects of the parent medication. In vitro cell growth inhibition against prostate cancer cell lines (LNCaP and DU 145) was measured for CuIrb, irbesartan and copper(II). These cell lines have been selected since the angiotensin II type 1 (AT1) receptor (that was blocked by the angiotensin receptor blockers, ARB) has been identified in them. The complex exerted anticancer behavior (at 100 μM) improving the activity of the ligand. Flow cytometry determinations were used to determine late apoptotic mechanisms of cell death.