An adaptive finite element scheme to solve fluid-structure vibration problems on non-matching grids
This paper deals with the computation of the vibration modes of a system consisting of a linear elastic solid interacting with an acoustic fluid. A finite element method based on meshes for each medium not matching on the fluid-solid interface is analyzed. Optimal order of convergence is proved for...
Guardado en:
| Autores principales: | , , , , |
|---|---|
| Formato: | Articulo |
| Lenguaje: | Inglés |
| Publicado: |
2001
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/133108 |
| Aporte de: |
| Sumario: | This paper deals with the computation of the vibration modes of a system consisting of a linear elastic solid interacting with an acoustic fluid. A finite element method based on meshes for each medium not matching on the fluid-solid interface is analyzed. Optimal order of convergence is proved for the approximation of the eigenfunctions, as well as a double order for the eigenvalues. Numerical tests confirming the theoretical results and showing the advantage of using non-matching grids are reported. Finally, an a posteriori error estimator for this method is introduced and combined with a mesh refinement strategy. The efficiency of this adaptive technique is tested with further numerical experiments. |
|---|