Clique graph recognition is NP-complete
A complete set of a graph G is a subset of V inducing a complete subgraph. A clique is a maximal complete set. Denote by the clique family of G. The clique graph of G, denoted by K(G), is the intersection graph of . Say that G is a clique graph if there exists a graph H such that G=K(H). The clique...
Guardado en:
| Autores principales: | , , , |
|---|---|
| Formato: | Objeto de conferencia |
| Lenguaje: | Inglés |
| Publicado: |
2006
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/132535 |
| Aporte de: |
| Sumario: | A complete set of a graph G is a subset of V inducing a complete subgraph. A clique is a maximal complete set. Denote by the clique family of G. The clique graph of G, denoted by K(G), is the intersection graph of . Say that G is a clique graph if there exists a graph H such that G=K(H). The clique graph recognition problem asks whether a given graph is a clique graph. A sufficient condition was given by Hamelink in 1968, and a characterization was proposed by Roberts and Spencer in 1971. We prove that the clique graph recognition problem is NP-complete. |
|---|