Charge density and conductivity of disordered Berry-Mondragon graphene nanoribbons
We consider gated graphene nanoribbons subject to Berry-Mondragon boundary conditions in the presence of weak impurities. Using field-theoretical methods, we calculate the density of charge carriers (and, thus, the quantum capacitance) as well as the optical and DC conductivities at zero temperature...
Guardado en:
| Autores principales: | , , , |
|---|---|
| Formato: | Articulo Preprint |
| Lenguaje: | Inglés |
| Publicado: |
2014
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/132211 |
| Aporte de: |
| Sumario: | We consider gated graphene nanoribbons subject to Berry-Mondragon boundary conditions in the presence of weak impurities. Using field-theoretical methods, we calculate the density of charge carriers (and, thus, the quantum capacitance) as well as the optical and DC conductivities at zero temperature. We discuss in detail their dependence on the gate (chemical) potential, and reveal a non-linear behaviour induced by the quantization of the transversal momentum. |
|---|