Deformation by cocycles of pointed Hopf algebras over non-abelian groups

We explore a method for explicitly constructing multiplicative 2-cocycles for bosonizations of Nichols algebras B(V) over Hopf algebras H. These cocycles arise as liftings of H-invariant linear functionals on V ⊗ V and give a formula for deforming braidedcommutator-type relations. Using this constru...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: García, Gastón Andrés, Mastnak, Mitja
Formato: Articulo Preprint
Lenguaje:Inglés
Publicado: 2015
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/132104
Aporte de:
Descripción
Sumario:We explore a method for explicitly constructing multiplicative 2-cocycles for bosonizations of Nichols algebras B(V) over Hopf algebras H. These cocycles arise as liftings of H-invariant linear functionals on V ⊗ V and give a formula for deforming braidedcommutator-type relations. Using this construction, we show that all known finite-dimensional pointed Hopf algebras over the dihedral groups Dm with m = 4t ≥ 12, over the symmetric group S3, and some families over S4 are cocycle deformations of bosonizations of Nichols algebras.