Local Minimal Curves in Homogeneous Reductive Spaces of the Unitary Group of a Finite von Neumann Algebra
We study the metric geometry of homogeneous reductive spaces of the unitary group of a finite von Neumann algebra with a non complete Riemannian metric. The main result gives an abstract sufficient condition in order that the geodesics of the Levi-Civita connection are locally minimal. Then, we show...
Guardado en:
| Autor principal: | Chiumiento, Eduardo Hernán |
|---|---|
| Formato: | Articulo |
| Lenguaje: | Inglés |
| Publicado: |
2008
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/130677 |
| Aporte de: |
Ejemplares similares
-
Homogeneous manifolds from noncommutative measure spaces
por: Andruchow, Esteban, et al.
Publicado: (2010) -
Examples of homogeneous manifolds with uniformly bounded metric projection
por: Chiumiento, Eduardo Hernán
Publicado: (2012) -
Differential and metrical structure of positive operators
por: Corach, G., et al. -
Differential and metrical structure of positive operators
por: Corach, Gustavo, et al.
Publicado: (1999) -
Larotonda spaces : homogeneous spaces and conditional expectations
por: Andruchow, Esteban, et al.
Publicado: (2024)