Sensitivity of the orbital content of a model stellar system to the potential approximation used to describe it

We have classified orbits in a stationary triaxial stellar system created from a cold dissipationless collapse of 100,000 particles. In order to integrate the orbits, two potential approximations with different fitting functions were used in turn. We found that the relative amount of chaotic versus...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Carpintero, Daniel Diego, Wachlin, Felipe Carlos
Formato: Articulo
Lenguaje:Inglés
Publicado: 2006
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/130461
Aporte de:
Descripción
Sumario:We have classified orbits in a stationary triaxial stellar system created from a cold dissipationless collapse of 100,000 particles. In order to integrate the orbits, two potential approximations with different fitting functions were used in turn. We found that the relative amount of chaotic versus regular orbits does depend on the chosen approximation of potential, even though both models resulted in very good fits of the underlying exact potential. On the other hand, the content of regular orbits, i.e., its distribution among main families, does not strongly depend of the potential approximation, being therefore a more robust signature of the gravitational system under study.