Spatiotemporal control of cell cycle acceleration during axolotl spinal cord regeneration

Axolotls are uniquely able to resolve spinal cord injuries, but little is known about the mechanisms underlying spinal cord regeneration. We previously found that tail amputation leads to reactivation of a developmental-like program in spinal cord ependymal cells (Rodrigo Albors et al., 2015), chara...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Cura Costa, Emanuel, Otsuki, Leo, Rodrigo Albors, Aida, Tanaka, Elly M., Chara, Osvaldo
Formato: Conjunto de datos
Lenguaje:Inglés
Publicado: 2021
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/129991
Aporte de:
id I19-R120-10915-129991
record_format dspace
spelling I19-R120-10915-1299912023-04-26T12:49:51Z http://sedici.unlp.edu.ar/handle/10915/129991 Spatiotemporal control of cell cycle acceleration during axolotl spinal cord regeneration Cura Costa, Emanuel Otsuki, Leo Rodrigo Albors, Aida Tanaka, Elly M. Chara, Osvaldo 2021-12-23T17:44:04Z 2021-02-23 en Biología https://purl.org/becyt/ford/1.6 Axolotl Cell cycle Regeneration FUCCI Spinal cord Axolotls are uniquely able to resolve spinal cord injuries, but little is known about the mechanisms underlying spinal cord regeneration. We previously found that tail amputation leads to reactivation of a developmental-like program in spinal cord ependymal cells (Rodrigo Albors et al., 2015), characterized by a high-proliferation zone emerging 4 days post-amputation (Rost et al., 2016). What underlies this spatiotemporal pattern of cell proliferation, however, remained unknown. Here, we use modeling, tightly linked to experimental data, to demonstrate that this regenerative response is consistent with a signal that recruits ependymal cells during ~85 hours after amputation within ~830 μm of the injury. We adapted Fluorescent Ubiquitination-based Cell Cycle Indicator (FUCCI) technology to axolotls (AxFUCCI) to visualize cell cycles in vivo. AxFUCCI axolotls confirmed the predicted appearance time and size of the injury-induced recruitment zone and revealed cell cycle synchrony between ependymal cells. Our modeling and imaging move us closer to understanding bona fide spinal cord regeneration. This is the second release of the Jupyter Notebooks that contains source code for data analysis performed for Cura Costa et al., 2021. You can view the current version of the notebooks on GitHub or browse them online using nbviewer. Fil: Chara, Osvaldo. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina. Technische Universität Dresden. Center for Information Services and High Performance Computing; Alemania. Fil: Cura Costa, Emanuel. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina. Instituto de Física de Líquidos y Sistemas Biológicos Conjunto de datos Conjunto de datos http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) application/zip
institution Universidad Nacional de La Plata
institution_str I-19
repository_str R-120
collection SEDICI (UNLP)
language Inglés
topic Biología
https://purl.org/becyt/ford/1.6
Axolotl
Cell cycle
Regeneration
FUCCI
Spinal cord
spellingShingle Biología
https://purl.org/becyt/ford/1.6
Axolotl
Cell cycle
Regeneration
FUCCI
Spinal cord
Cura Costa, Emanuel
Otsuki, Leo
Rodrigo Albors, Aida
Tanaka, Elly M.
Chara, Osvaldo
Spatiotemporal control of cell cycle acceleration during axolotl spinal cord regeneration
topic_facet Biología
https://purl.org/becyt/ford/1.6
Axolotl
Cell cycle
Regeneration
FUCCI
Spinal cord
description Axolotls are uniquely able to resolve spinal cord injuries, but little is known about the mechanisms underlying spinal cord regeneration. We previously found that tail amputation leads to reactivation of a developmental-like program in spinal cord ependymal cells (Rodrigo Albors et al., 2015), characterized by a high-proliferation zone emerging 4 days post-amputation (Rost et al., 2016). What underlies this spatiotemporal pattern of cell proliferation, however, remained unknown. Here, we use modeling, tightly linked to experimental data, to demonstrate that this regenerative response is consistent with a signal that recruits ependymal cells during ~85 hours after amputation within ~830 μm of the injury. We adapted Fluorescent Ubiquitination-based Cell Cycle Indicator (FUCCI) technology to axolotls (AxFUCCI) to visualize cell cycles in vivo. AxFUCCI axolotls confirmed the predicted appearance time and size of the injury-induced recruitment zone and revealed cell cycle synchrony between ependymal cells. Our modeling and imaging move us closer to understanding bona fide spinal cord regeneration.
format Conjunto de datos
Conjunto de datos
author Cura Costa, Emanuel
Otsuki, Leo
Rodrigo Albors, Aida
Tanaka, Elly M.
Chara, Osvaldo
author_facet Cura Costa, Emanuel
Otsuki, Leo
Rodrigo Albors, Aida
Tanaka, Elly M.
Chara, Osvaldo
author_sort Cura Costa, Emanuel
title Spatiotemporal control of cell cycle acceleration during axolotl spinal cord regeneration
title_short Spatiotemporal control of cell cycle acceleration during axolotl spinal cord regeneration
title_full Spatiotemporal control of cell cycle acceleration during axolotl spinal cord regeneration
title_fullStr Spatiotemporal control of cell cycle acceleration during axolotl spinal cord regeneration
title_full_unstemmed Spatiotemporal control of cell cycle acceleration during axolotl spinal cord regeneration
title_sort spatiotemporal control of cell cycle acceleration during axolotl spinal cord regeneration
publishDate 2021
url http://sedici.unlp.edu.ar/handle/10915/129991
work_keys_str_mv AT curacostaemanuel spatiotemporalcontrolofcellcycleaccelerationduringaxolotlspinalcordregeneration
AT otsukileo spatiotemporalcontrolofcellcycleaccelerationduringaxolotlspinalcordregeneration
AT rodrigoalborsaida spatiotemporalcontrolofcellcycleaccelerationduringaxolotlspinalcordregeneration
AT tanakaellym spatiotemporalcontrolofcellcycleaccelerationduringaxolotlspinalcordregeneration
AT charaosvaldo spatiotemporalcontrolofcellcycleaccelerationduringaxolotlspinalcordregeneration
_version_ 1765659845560631296