Inversion of Umarov–Tsallis–Steinberg’s q-Fourier transform and the complex-plane generalization
We introduce a complex q-Fourier transform as a generalization of the (real) one analyzed in [S. Umarov, C. Tsallis, S. Steinberg, Milan J. Math. 307 (2008)]. By recourse to tempered ultradistributions we show that this complex-plane generalization overcomes all the troubles that afflict its real co...
Guardado en:
| Autores principales: | Plastino, Ángel Luis, Rocca, Mario Carlos |
|---|---|
| Formato: | Articulo |
| Lenguaje: | Inglés |
| Publicado: |
2012
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/129646 |
| Aporte de: |
Ejemplares similares
-
Reflections on the q-Fourier transform and the q-Gaussian function
por: Plastino, Ángel Luis, et al.
Publicado: (2013) -
The Tsallis-Laplace transform
por: Plastino, Ángel Luis, et al.
Publicado: (2013) -
On the nature of the Tsallis-Fourier transform
por: Plastino, Ángel Luis, et al.
Publicado: (2015) -
q-Fourier Transform and its inversion-problem
por: Plastino, Ángel Luis, et al.
Publicado: (2012) -
Addendum to “Treatment of Gamow states using tempered ultradistributions”
por: De Paoli, Ángel Luis, et al.
Publicado: (2000)