Wess-Zumino-Witten and fermion models in noncommutative space
We analyze the connection between Wess-Zumino-Witten and free fermion models in two-dimensional noncommutative space. Starting from the computation of the determinant of the Dirac operator in a gauge field background, we derive the corresponding bosonization recipe studying, as an example, bosonizat...
Guardado en:
| Autores principales: | , |
|---|---|
| Formato: | Articulo |
| Lenguaje: | Inglés |
| Publicado: |
2001
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/129618 |
| Aporte de: |
| Sumario: | We analyze the connection between Wess-Zumino-Witten and free fermion models in two-dimensional noncommutative space. Starting from the computation of the determinant of the Dirac operator in a gauge field background, we derive the corresponding bosonization recipe studying, as an example, bosonization of the U(N) Thirring model. Concerning the properties of the noncommutative Wess-Zumino-Witten model, we construct an orbit-preserving transformation that maps the standard commutative WZW action into the noncommutative one. |
|---|