Is there any information on micro-structure in microwave tomography of bone tissue?

In this work, two-dimensional simulations of the microwave dielectric properties of models with ellipses and realistic models of trabecular bone tissue are performed . In these simulations, finite difference time domain methodology has been applied to simulate two-phase structures containing inclusi...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Irastorza, Ramiro Miguel, Carlevaro, Carlos Manuel, Vericat, Fernando
Formato: Articulo Preprint
Lenguaje:Inglés
Publicado: 2013
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/128485
Aporte de:
Descripción
Sumario:In this work, two-dimensional simulations of the microwave dielectric properties of models with ellipses and realistic models of trabecular bone tissue are performed . In these simulations, finite difference time domain methodology has been applied to simulate two-phase structures containing inclusions. The results presented here show that the micro-structure is an important factor in the effective dielectric properties of trabecular bone. We consider the feasibility of using the dielectric behaviour of bone tissue to be an indicator of bone health. The frequency used was 950 MHz. It was found that the dielectric properties can be used as an estimate of the degree of anisotropy of the micro-structure of the trabecular tissue. Conductivity appears to be the most sensitive parameter in this respect. Models with ellipse shaped-inclusions are also tested to study their application to modelling bone tissue. Models with ellipses that had an aspect ratio of a / b  = 1.5 showed relatively good agreement when compared with realistic models of bone tissue. According to the results presented here, the anisotropy of trabecular bone must be accounted for when measuring its dielectric properties using microwave imaging.