Model subspaces techniques to study Fourier expansions in L2 spaces associated to singular measures
Let μ be a probability measure on T that is singular with respect to the Haar measure. In this paper we study Fourier expansions in L² (T, μ) using techniques from the theory of model subspaces of the Hardy space. Since the sequence of monomials {zⁿ} n ∈ N is effective in L² (T, μ) , it has a Parsev...
Guardado en:
| Autores principales: | Antezana, Jorge Abel, García, María Guadalupe |
|---|---|
| Formato: | Articulo Preprint |
| Lenguaje: | Inglés |
| Publicado: |
2020
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/128403 |
| Aporte de: |
Ejemplares similares
-
Some properties of frames of subspaces obtained by operator theory methods
por: Ruiz, Mariano Andrés, et al.
Publicado: (2008) -
Procrustes problems and Parseval quasi-dual frames
por: Corach, Gustavo, et al.
Publicado: (2014) -
Subspaces with extra invariance nearest to observed data
por: Cabrelli, C., et al. -
Subspaces with extra invariance nearest to observed data
por: Cabrelli, Carlos Alberto
Publicado: (2016) -
On frames for Krein spaces
por: Giribet, J.I., et al.