Self-dual Ginzburg-Landau vortices in a disk

We study the properties of the Ginzburg-Laundau model in the self-dual point for a two-dimensional finite system . By a numerical calculation we analyze the solutions of the Euler-Lagrange equations for a cylindrically symmetric ansatz. We also study the self-dual equations for this case. We find th...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Lozano, G. S., Manías, María Virginia, Moreno, Enrique Francisco
Formato: Articulo Preprint
Lenguaje:Inglés
Publicado: 2001
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/128097
Aporte de:
Descripción
Sumario:We study the properties of the Ginzburg-Laundau model in the self-dual point for a two-dimensional finite system . By a numerical calculation we analyze the solutions of the Euler-Lagrange equations for a cylindrically symmetric ansatz. We also study the self-dual equations for this case. We find that the minimal energy configurations are not given by the Bogomol'nyi equations but by solutions to the Euler Lagrange ones. With a simple approximation scheme we reproduce the result of the numerical calculation.