Functional bosonization with time dependent perturbations
We extend a path-integral approach to bosonization previously developed in the framework of equilibrium Quantum Field Theories, to the case in which time-dependent interactions are taken into account. In particular we consider a non covariant version of the Thirring model in the presence of a dynami...
Guardado en:
| Autores principales: | , , |
|---|---|
| Formato: | Articulo Preprint |
| Lenguaje: | Inglés |
| Publicado: |
2004
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/126418 |
| Aporte de: |
| Sumario: | We extend a path-integral approach to bosonization previously developed in the framework of equilibrium Quantum Field Theories, to the case in which time-dependent interactions are taken into account. In particular we consider a non covariant version of the Thirring model in the presence of a dynamic barrier at zero temperature. By using the Closed Time Path (Schwinger-Keldysh) formalism, we compute the Green's function and the Total Energy Density of the system. Since our model contains the Tomonaga Luttinger model as a particular case, we make contact with recent results on non-equilibrium electronic systems. |
|---|