Real-time Rescheduling of Production Systems using Relational Reinforcement Learning
Most scheduling methodologies developed until now have laid down good theoretical foundations, but there is still the need for real-time rescheduling methods that can work effectively in disruption management. In this work, a novel approach for automatic generation of rescheduling knowledge using Re...
Guardado en:
| Autores principales: | , |
|---|---|
| Formato: | Objeto de conferencia |
| Lenguaje: | Inglés |
| Publicado: |
2011
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/126372 https://40jaiio.sadio.org.ar/sites/default/files/T2011/JII/694.pdf |
| Aporte de: |
| Sumario: | Most scheduling methodologies developed until now have laid down good theoretical foundations, but there is still the need for real-time rescheduling methods that can work effectively in disruption management. In this work, a novel approach for automatic generation of rescheduling knowledge using Relational Reinforcement Learning (RRL) is presented. Relational representations of schedule states and repair operators enable to encode in a compact way and use in real-time rescheduling knowledge learned through intensive simulations of state transitions. An industrial example where a current schedule must be repaired following the arrival of a new order is discussed using a prototype application –SmartGantt®- for interactive rescheduling in a reactive way. SmartGantt® demonstrates the advantages of resorting to RRL and abstract states for real-time rescheduling. A small number of training episodes are required to define a repair policy which can handle on the fly events such as order insertion, resource break-down, raw material delay or shortage and rush order arrivals using a sequence of operators to achieve a selected goal. |
|---|