Evaluation of pairwise entanglement in translationally invariant systems with the random phase approximation

We discuss a general mean field plus random phase approximation (RPA) for describing composite systems at zero and finite temperature. We analyze in particular its implementation in finite systems invariant under translations, where for uniform mean fields it requires just the solution of simple loc...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Matera, Juan Mauricio, Rossignoli, Raúl Dante, Canosa, Norma Beatriz
Formato: Articulo
Lenguaje:Inglés
Publicado: 2008
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/126047
Aporte de:
Descripción
Sumario:We discuss a general mean field plus random phase approximation (RPA) for describing composite systems at zero and finite temperature. We analyze in particular its implementation in finite systems invariant under translations, where for uniform mean fields it requires just the solution of simple local-type RPA equations. As test and application, we use the method for evaluating the entanglement between two spins in cyclic Evaluation of pairwise entanglement in translationally invariant systems with the random phase approximation chains with both long- and short-range anisotropic XY-type couplings in a uniform transverse magnetic field. The approach is shown to provide an accurate analytic description of the concurrence for strong fields, for any coupling range, pair separation, or chain size, where it predicts an entanglement range which can be at most twice that of the interaction. It also correctly predicts the existence of a separability field together with full entanglement range in its vicinity. The general accuracy of the approach improves as the range of the interaction increases.