Proton-neutron self-consistent quasiparticle random phase approximation within the O(5) model

The self-consistent quasiparticle random phase approximation (SCQRPA) within the O(5) model in the coupled proton-neutron representation is analyzed. The exact vacuum wave function is used to compute all involved matrix elements. A stability analysis of the stationary points is performed. A phase tr...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Delion, D. S., Dukelsky, Jorge, Schuck, Peter, Passos, E. J. V. de, Krmpotić, Francisco
Formato: Articulo
Lenguaje:Inglés
Publicado: 2000
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/126046
Aporte de:
Descripción
Sumario:The self-consistent quasiparticle random phase approximation (SCQRPA) within the O(5) model in the coupled proton-neutron representation is analyzed. The exact vacuum wave function is used to compute all involved matrix elements. A stability analysis of the stationary points is performed. A phase transition from the uncoupled to the coupled stable proton-neutron regime beyond the QRPA breakdown value of the particle-particle strength is evidenced. The excitation energies are close to the lowest stable exact eigenvalues given by the diagonalization procedure for all cases. The conditions for which the Ikeda sum rule is fulfilled for all values of the particle-particle strength are pointed out.