ROGER: Reconstructing Orbits of Galaxies in Extreme Regions using machine learning techniques
We present the ROGER (Reconstructing Orbits of Galaxies in Extreme Regions) code, which uses three different machine learning techniques to classify galaxies in, and around, clusters, according to their projected phase-space position. We use a sample of 34 massive, 200 > 1015ℎ −1 , galaxy c...
Guardado en:
| Autores principales: | Rios, Martín de los, Martínez, Héctor J., Coenda, Valeria, Muriel, H., Ruiz, Andrés N., Vega Martínez, Cristian A., Cora, Sofía Alejandra |
|---|---|
| Formato: | Articulo Preprint |
| Lenguaje: | Inglés |
| Publicado: |
2020
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/125930 |
| Aporte de: |
Ejemplares similares
-
Modelling satellite galaxies in semi-analytical models
por: Delfino, F. M., et al.
Publicado: (2021) -
nIFTy cosmology: comparison of galaxy formation models
por: Cora, Sofía Alejandra, et al.
Publicado: (2015) -
And yet it moves: The dangers of artificially fixing the Milky Way center of mass in the presence of a massive large magellanic cloud
por: Gómez, F. A., et al.
Publicado: (2015) -
On the evolution of low-mass central galaxies in the vicinity of massive structures
por: Palma, Daniela, et al.
Publicado: (2024) -
A SLUGGS and Gemini/GMOS combined study of the elliptical galaxy M60: wide-field photometry and kinematics of the globular cluster system
por: Faifer, Favio Raúl, et al.
Publicado: (2015)