From skyrmions to Z2 vortices in distorted chiral antiferromagnets

Swirling topological spin configurations, known as magnetic skyrmions, are known to be stabilised in chiral ferromagnets with Dzyaloshinskii-Moriya interaction (DMI). In particular, for appropriate values of the external magnetic field they appear in a topological crystalline phase, termed Skyrmion...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Osorio, Santiago Antonio, Sturla, Mauricio, Rosales, Héctor Diego, Cabra, Daniel Carlos
Formato: Articulo Preprint
Lenguaje:Inglés
Publicado: 2019
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/125535
Aporte de:
Descripción
Sumario:Swirling topological spin configurations, known as magnetic skyrmions, are known to be stabilised in chiral ferromagnets with Dzyaloshinskii-Moriya interaction (DMI). In particular, for appropriate values of the external magnetic field they appear in a topological crystalline phase, termed Skyrmion crystal phase (SkX). A similar phenomenon is present in the antiferromagnetic case, for the Heisenberg triangular antiferromagnet (HTAF) with DMI. Here, the most striking feature is that the emergent topological phase consists of three SkX interpenetrated sublattices. On the other hand, the pure HTAF, being described by an SO(3) order parameter, can host ℤ₂ vortices. This rises the fundamental question on whether both non trivial structures are related. In this paper we unravel a hidden connection between both topological entities by studying the HTAF with anisotropic DMI. To this end, we combine an effective field theory description, the Luttinger-Tisza approximation and Monte Carlo simulations. We show that even a slight anisotropy in the DMI proves to be the key ingredient to deform the interpenetrated SkX structure and reveal a ℤ₂-vortex crystal.