Two infinite families of critical clique-Helly graphs

A graph is clique–Helly if every family of pairwise intersecting (maximal) cliques has non-empty total intersection. Dourado, Protti and Szwarcfiter conjectured that every clique–Helly graph contains a vertex whose removal maintains it as a clique–Helly graph. We present here two infinite families o...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Alcón, Liliana Graciela, Pizaña, Miguel A., Ravenna, Gabriela Susana
Formato: Articulo
Lenguaje:Inglés
Publicado: 2020
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/124932
Aporte de:
Descripción
Sumario:A graph is clique–Helly if every family of pairwise intersecting (maximal) cliques has non-empty total intersection. Dourado, Protti and Szwarcfiter conjectured that every clique–Helly graph contains a vertex whose removal maintains it as a clique–Helly graph. We present here two infinite families of counterexamples to this conjecture.