Two infinite families of critical clique-Helly graphs
A graph is clique–Helly if every family of pairwise intersecting (maximal) cliques has non-empty total intersection. Dourado, Protti and Szwarcfiter conjectured that every clique–Helly graph contains a vertex whose removal maintains it as a clique–Helly graph. We present here two infinite families o...
Guardado en:
| Autores principales: | , , |
|---|---|
| Formato: | Articulo |
| Lenguaje: | Inglés |
| Publicado: |
2020
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/124932 |
| Aporte de: |
| Sumario: | A graph is clique–Helly if every family of pairwise intersecting (maximal) cliques has non-empty total intersection. Dourado, Protti and Szwarcfiter conjectured that every clique–Helly graph contains a vertex whose removal maintains it as a clique–Helly graph. We present here two infinite families of counterexamples to this conjecture. |
|---|