Symmetric affine surfaces with torsion
We study symmetric affine surfaces which have non-vanishing torsion tensor. We give a complete classification of the local geometries possible if the torsion is assumed parallel. This generalizes a previous result of Opozda in the torsion free setting; these geometries are all locally homogeneous. I...
Guardado en:
| Autores principales: | , , |
|---|---|
| Formato: | Articulo Preprint |
| Lenguaje: | Inglés |
| Publicado: |
2020
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/124913 |
| Aporte de: |
| Sumario: | We study symmetric affine surfaces which have non-vanishing torsion tensor. We give a complete classification of the local geometries possible if the torsion is assumed parallel. This generalizes a previous result of Opozda in the torsion free setting; these geometries are all locally homogeneous. If the torsion is not parallel, we assume the underlying surface is locally homogeneous and provide a complete classification in this setting as well. |
|---|