Can fermionic dark matter mimic supermassive black holes?

We analyze the intriguing possibility of explaining both dark mass components in a galaxy: the dark matter (DM) halo and the supermassive dark compact object lying at the center, by a unified approach in terms of a quasi-relaxed system of massive, neutral fermions in general relativity. The solution...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Argüelles, Carlos Raúl, Krut, A., Rueda, Jorge A., Ruffini, Remo
Formato: Articulo Preprint
Lenguaje:Inglés
Publicado: 2019
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/124441
Aporte de:
Descripción
Sumario:We analyze the intriguing possibility of explaining both dark mass components in a galaxy: the dark matter (DM) halo and the supermassive dark compact object lying at the center, by a unified approach in terms of a quasi-relaxed system of massive, neutral fermions in general relativity. The solutions to the mass distribution of such a model that fulfill realistic halo boundary conditions inferred from observations, develop a high-density core supported by the fermion degeneracy pressure able to mimic massive black holes at the center of galaxies. Remarkably, these dense core-diluted halo configurations can explain the dynamics of the closest stars around Milky Way’s center (SgrA*) all the way to the halo rotation curve, without spoiling the baryonic bulge-disk components, for a narrow particle mass range mc<sup>2</sup>∼10–10<sup>2</sup>keV.