Mixed methods for degenerate elliptic problems and application to fractional Laplacian
We analyze the approximation by mixed finite element methods of solutions of equations of the form −div (a ∇u) = g , where the coefficient a = a (x ) can degenerate going to zero or infinity. First, we extend the classic error analysis to this case provided that the coefficient a belongs to the Muc...
Guardado en:
| Autores principales: | Cejas, María Eugenia, Durán, Ricardo Guillermo, Prieto, Mariana I. |
|---|---|
| Formato: | Articulo |
| Lenguaje: | Inglés |
| Publicado: |
2021
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/124331 |
| Aporte de: |
Ejemplares similares
-
Finite Element Approximation for the Fractional Eigenvalue Problem
por: Borthagaray, J.P., et al. -
Finite Element Approximation for the Fractional Eigenvalue Problem
Publicado: (2018) -
A short FE implementation for a 2d homogeneous Dirichlet problem of a fractional Laplacian
por: Acosta, G., et al. -
A short FE implementation for a 2d homogeneous Dirichlet problem of a fractional Laplacian
por: Acosta Rodriguez, Gabriel
Publicado: (2017) -
Stabilization of low-order cross-grid PkQl mixed finite elements
por: Armentano, M.G.