Automated Task Rescheduling using Relational Markov Decision Processes with Logical State Abstractions
Generating and representing knowledge about heuristics for repair-based scheduling is a key issue in any rescheduling strategy to deal with unforeseen events and disturbances. Resorting to a feature-based representation of schedule states is very inefficient and generalization to unseen states is hi...
Guardado en:
| Autores principales: | Palombarini, Jorge, Martínez, Ernesto |
|---|---|
| Formato: | Objeto de conferencia |
| Lenguaje: | Inglés |
| Publicado: |
2012
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/123726 https://41jaiio.sadio.org.ar/sites/default/files/6_ASAI_2012.pdf |
| Aporte de: |
Ejemplares similares
-
Real-time Rescheduling of Production Systems using Relational Reinforcement Learning
por: Palombarini, Jorge, et al.
Publicado: (2011) -
A cognitive approach to real-time rescheduling using SOAR-RL
por: Barsce, Juan Cruz, et al.
Publicado: (2013) -
Generating rescheduling knowledge using reinforcement learning in a cognitive architecture
por: Palombarini, Jorge, et al.
Publicado: (2014) -
Dynamic programming for variable discounted Markov decision problems
por: Della Vecchia, Eugenio, et al.
Publicado: (2014) -
Markov processes : characterization and convergence /
por: Ethier, Stewart N., 1948-
Publicado: (1986)