A pairwise subspace projection method for multi-class linear dimension reduction
Linear feature extraction is commonly applied in an all-at-once way, meaning that a single trasformation is used for all the data regardless of the classes. Very good results can be achieved with this approach when the classification problem involves just a few classes. Nevertheless, when the number...
Guardado en:
| Autor principal: | Tomassi, Diego |
|---|---|
| Formato: | Objeto de conferencia |
| Lenguaje: | Inglés |
| Publicado: |
2012
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/123721 https://41jaiio.sadio.org.ar/sites/default/files/5_ASAI_2012.pdf |
| Aporte de: |
Ejemplares similares
-
A dimension reduction scheme for the computation of optimal unions of subspaces
por: Aldroubi, A., et al. -
A dimension reduction scheme for the computation of optimal unions of subspaces
por: Anastasio, Magalí, et al.
Publicado: (2011) -
Some properties of frames of subspaces obtained by operator theory methods
por: Ruiz, Mariano Andrés, et al.
Publicado: (2008) -
Dimension reduction for hidden Markov models using the suficiency approach
por: Tomassi, Diego, et al.
Publicado: (2011) -
Singular value estimates of oblique projections
por: Antezana, Jorge Abel, et al.
Publicado: (2009)