The Artinian Berger Conjecture

We propose an Artinian version of Berger's Conjecture for curves, concerning the module of K\"ahler differentials of an algebra. Our version implies Berger's Conjecture in characteristic 0. We establish our Artinian Berger Conjecture in a number of cases, and prove that Berger's...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Cortiñas, Guillermo Horacio, Geller, Susan C., Weibel, Charles A.
Formato: Articulo Preprint
Lenguaje:Inglés
Publicado: 1998
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/123578
Aporte de:
Descripción
Sumario:We propose an Artinian version of Berger's Conjecture for curves, concerning the module of K\"ahler differentials of an algebra. Our version implies Berger's Conjecture in characteristic 0. We establish our Artinian Berger Conjecture in a number of cases, and prove that Berger's Conjecture holds for curve singularities whose conductor ideal contains the cube of a maximal ideal.