On the regularized determinant for non-invertible elliptic operators
We propose a technique for regularizing the determinant of a non-invertible elliptic operator restricted to the complement of its nilpotent elements. We apply this approach to the study of chiral changes in the fermionic path-integral variables.
Guardado en:
| Autores principales: | , , |
|---|---|
| Formato: | Articulo |
| Lenguaje: | Inglés |
| Publicado: |
1984
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/123515 |
| Aporte de: |
| Sumario: | We propose a technique for regularizing the determinant of a non-invertible elliptic operator restricted to the complement of its nilpotent elements. We apply this approach to the study of chiral changes in the fermionic path-integral variables. |
|---|