Kinetics and mechanism of the electrochemical oxidation of the NO−<sub>2</sub> ion on platinum in AgNO<sub>2</sub>-acetonitrile solution

The anodic oxidation of NO−2 ion dissolved as AgNO2 in ACN, in the range − 12° to 68°C, is investigated using platinum electrodes. Single and multiple linear potential sweep and rotating disc electrode techniques are used. The electrochemical reaction is interpreted with the following sequence of re...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Castellano, Carlos E., Calandra, Alfredo J., Arvia, Alejandro Jorge
Formato: Articulo
Lenguaje:Inglés
Publicado: 1974
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/121709
Aporte de:
Descripción
Sumario:The anodic oxidation of NO−2 ion dissolved as AgNO2 in ACN, in the range − 12° to 68°C, is investigated using platinum electrodes. Single and multiple linear potential sweep and rotating disc electrode techniques are used. The electrochemical reaction is interpreted with the following sequence of reactions: rds (1) NO<sub>2</sub> = NO<sub>2</sub> + e (2) [2 NO<sub>2</sub> ⇋ N<sub>2</sub>O<sub>4</sub>] (3) NO<sub>2</sub> + NO<sub>2</sub> = NO + NO<sub>3</sub> (4) NO = NO- + e (5) NO+ + NO<sub>2</sub> = N<sub>2</sub>O<sub>3</sub> (6) [N<sub>2</sub>O<sub>3</sub> ⇋ NO + NO<sub>2</sub>] Step (1) behaves as an irreversible step which at high potentials is diffusion controlled, while step (4) corresponds to a reversible charge transfer step. The chemical reactions are fast processes. The postulated reaction mechanism for the anodic discharge of the NO−<sub>2</sub> ion implies the preferential reaction of the initial product with a NO−<sub>2</sub> ion instead of a solvent molecule as it occurred with solutions employing other aprotic solvents.