Pauli Principle, Inflation and Simple Statistical Treatment of Free-Fermions
We study the dependence of the of microstates number (for free fermionsbosons) as a function of the volume-size in quantum statistics and fermions, and show then that fermions can not be accommodated in arbitrarily small volumes V. A minimum V = Vmin for that purpose is determined. Fermions can not...
Guardado en:
| Autores principales: | , , |
|---|---|
| Formato: | Articulo |
| Lenguaje: | Inglés |
| Publicado: |
2020
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/119301 |
| Aporte de: |
| Sumario: | We study the dependence of the of microstates number (for free fermionsbosons) as a function of the volume-size in quantum statistics and fermions, and show then that fermions can not be accommodated in arbitrarily small volumes V. A minimum V = Vmin for that purpose is determined. Fermions can not exist for min V < V . This fact might have something to do with inflation.
More precisely, in order to accommodate N fermions in a Slater determinant, we need a minimum radius, which is a consequence of the Pauli principle. This does not happen for bosons. As a consequence, extrapolating this statistical feature to a cosmological setting, we are able to “predict” a temperature-value for the final-stage of the inflationary period. This value agrees with current estimates. |
|---|