Structural Statistical Quantifiers and Thermal Features of Quantum Systems

This paper deals primarily with relatively novel thermal quantifiers called disequilibrium and statistical complexity, whose role is growing in different disciplines of physics and other sciences. These quantifiers are called L. Ruiz, Mancini, and Calvet (LMC) quantifiers, following the initials of...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Pennini, Flavia, Plastino, Ángel Luis, Plastino, Ángel Ricardo, Hernando, Alberto
Formato: Articulo
Lenguaje:Inglés
Publicado: 2020
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/118929
Aporte de:
Descripción
Sumario:This paper deals primarily with relatively novel thermal quantifiers called disequilibrium and statistical complexity, whose role is growing in different disciplines of physics and other sciences. These quantifiers are called L. Ruiz, Mancini, and Calvet (LMC) quantifiers, following the initials of the three authors who advanced them. We wish to establish information-theoretical bridges between LMC structural quantifiers and (1) Thermal Heisenberg uncertainties DxDp (at temperature T); (2) A nuclear physics fermion model. Having achieved such purposes, we determine to what an extent our bridges can be extended to both the semi-classical and classical realms. In addition, we find a strict bound relating a special LMC structural quantifier to quantum uncertainties.