Machine Learning Methods with Noisy, Incomplete or Small Datasets

In this article, we present a collection of fifteen novel contributions on machine learning methods with low-quality or imperfect datasets, which were accepted for publication in the special issue “Machine Learning Methods with Noisy, Incomplete or Small Datasets”, Applied Sciences (ISSN 2076-3417)....

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Caiafa, Cesar F., Sun, Zhe, Tanaka, Toshihisa, Marti-Puig, Pere, Solé-Casals, Jordi
Formato: Articulo
Lenguaje:Inglés
Publicado: 2021
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/118855
Aporte de:
Descripción
Sumario:In this article, we present a collection of fifteen novel contributions on machine learning methods with low-quality or imperfect datasets, which were accepted for publication in the special issue “Machine Learning Methods with Noisy, Incomplete or Small Datasets”, Applied Sciences (ISSN 2076-3417). These papers provide a variety of novel approaches to real-world machine learning problems where available datasets suffer from imperfections such as missing values, noise or artefacts. Contributions in applied sciences include medical applications, epidemic management tools, methodological work, and industrial applications, among others. We believe that this special issue will bring new ideas for solving this challenging problem, and will provide clear examples of application in real-world scenarios.