Flash sintering of zircon: rapid consolidation of an ultrahigh bandgap ceramic

Zircon (ZrSiO4) is a refractory structural ceramic material difficult to consolidate because of its thermal dissociation into ZrO2 and SiO2. Addition of sintering aids can improve its densification, but with detrimental effects on high temperature mechanical properties and corrosion resistance. In...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Martínez, Juan Manuel, Biesuz, Mattia, Dong, Jian, Gauna, Matías Roberto, Suárez, Gustavo, Sglavo, Vincenzo M., Lin, Hua-Tay, Grasso, Salvatore, Rendtorff Birrer, Nicolás Maximiliano
Formato: Articulo
Lenguaje:Inglés
Publicado: 2021
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/118799
Aporte de:
Descripción
Sumario:Zircon (ZrSiO4) is a refractory structural ceramic material difficult to consolidate because of its thermal dissociation into ZrO2 and SiO2. Addition of sintering aids can improve its densification, but with detrimental effects on high temperature mechanical properties and corrosion resistance. In this work, zircon was consolidated by employing the Flash Sintering (FS) technique at a furnace temperature of 1250°C under an electrical field of 1000 V cm−1. The decomposition of zircon was significantly reduced by lowering sintering time and current density. Unlike conventional sintering methods, FS approach allowed to track the degree of dissociation by measuring the electrical resistivity, providing a promising route for the consolidation of such materials. Although the obtained zircon ceramics are characterized by lower density and hardness/toughness than those sintered by alternative advanced techniques (like SPS of HEBM activated powders), the consolidation can be carried out at remarkably reduced furnace temperature.