Quantitative Structure-Activity Relationship study for pesticides by means of classification techniques
The aim of this work was the comparison between k-Nearest Neighbors (k-NN) and Counterpropagation Artificial Neural network (CP-ANN) classification methods for modeling the toxicity of a set of 192 organochlorinated, organophosphates, carbamates, and pyrethroid pesticides measured as effective conce...
Guardado en:
| Autores principales: | Cárdenas, Fernando, Tripaldi, Piercosimo, Rojas Villa, Cristian Xavier |
|---|---|
| Formato: | Articulo |
| Lenguaje: | Español |
| Publicado: |
2014
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/112921 https://revistas.usfq.edu.ec/index.php/avances/article/view/169 |
| Aporte de: |
Ejemplares similares
-
Non essential element concentrations in brown grain rice : assessment by advanced data mining techniques
por: Villafañe, Roxana Noelia, et al.
Publicado: (2021) -
Solving All-k-Nearest Neighbor Problem without an Index
por: Chávez, Edgar, et al.
Publicado: (2019) -
Conformation-independent quantitative structure-property relationships study on water solubility of pesticides
por: Fioressi, S.E., et al. -
Conformation-independent quantitative structure-property relationships study on water solubility of pesticides
Publicado: (2019) -
Pesticides and pests /
Publicado: (2019)