A first order Tsallis theory

We investigate first-order approximations to both (i) Tsallis’ entropy S<sub>q</sub> and (ii) the S<sub>q</sub>-MaxEnt solution (called q-exponential functions e<sub>q</sub>).We use an approximation/expansion for q very close to unity. It is shown that the functio...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Ferri, Gustavo L., Plastino, Ángel Luis, Rocca, Mario Carlos, Zamora, Darío Javier
Formato: Articulo
Lenguaje:Inglés
Publicado: 2017
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/109045
https://link.springer.com/article/10.1140%2Fepjb%2Fe2017-70699-1
Aporte de:
Descripción
Sumario:We investigate first-order approximations to both (i) Tsallis’ entropy S<sub>q</sub> and (ii) the S<sub>q</sub>-MaxEnt solution (called q-exponential functions e<sub>q</sub>).We use an approximation/expansion for q very close to unity. It is shown that the functions arising from the procedure (ii) are theMaxEnt solutions to the entropy emerging from (i). Our present treatment is motivated by the fact it is FREE of the poles that, for classic quadratic Hamiltonians, appear in Tsallis’ approach, as demonstrated in [A. Plastimo, M.C. Rocca, Europhys. Lett. 104, 60003 (2013)]. Additionally, we show that our treatment is compatible with extant date on the ozone layer.