On the deviation from a Curie-Weiss behavior of the ZnFe2O4 susceptibility: a combined ab-initio and Monte-Carlo approach

We present a numerical study of the magnetic properties of ZnFe2O4 using MonteCarlo simulations performed considering a Heisenberg model with antiferromagnetic couplings determined by Density Functional Theory. Our calculations predict that the magnetic susceptibility has a cusp-like peak centered a...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Melo Quintero, Jhon Jaither, Salcedo Rodríguez, Karen Lizeth, Gómez Albarracín, Flavia Alejandra, Rosales, Héctor Diego, Mendoza Zélis, Pedro, Stewart, Silvana Jacqueline, Errico, Leonardo Antonio, Rodríguez Torres, Claudia Elena
Formato: Articulo
Lenguaje:Inglés
Publicado: 2019
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/107278
http://europepmc.org/backend/ptpmcrender.fcgi?accid=PMC6354655&blobtype=pdf
Aporte de:
Descripción
Sumario:We present a numerical study of the magnetic properties of ZnFe2O4 using MonteCarlo simulations performed considering a Heisenberg model with antiferromagnetic couplings determined by Density Functional Theory. Our calculations predict that the magnetic susceptibility has a cusp-like peak centered at 13 K, and follows a Curie–Weiss behavior above this temperature with a high and negative Curie–Weiss temperature (Θ = −170 K). These results agree with the experimental data once extrinsic contributions that give rise to the deviation from a Curie–Weiss law are discounted. Additionally, we discuss the spin configuration of ZnFe2O4 below its ordering temperature, where the system presents a high degeneracy