Modelo termo-mecánico-metalúrgico de las transformaciones de fase en estado sólido de fundiciones nodulares: Estudio de sensibilidad
La fundición de hierro nodular es una aleación metálica cada vez más empleada en las industrias automotriz y agrícola, debido a sus buenas propiedades mecánicas y al bajo costo de producción. Debido a la estrecha relación que guardan las propiedades mecánicas con la microestructura del material, es...
Guardado en:
| Autores principales: | , , , |
|---|---|
| Formato: | Objeto de conferencia Resumen |
| Lenguaje: | Español |
| Publicado: |
2017
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/104867 https://cimec.org.ar/ojs/index.php/mc/article/view/5373 |
| Aporte de: |
| Sumario: | La fundición de hierro nodular es una aleación metálica cada vez más empleada en las industrias automotriz y agrícola, debido a sus buenas propiedades mecánicas y al bajo costo de producción. Debido a la estrecha relación que guardan las propiedades mecánicas con la microestructura del material, es de gran interés conocer la microestructura resultante luego de los procesos de solidificación-enfriamiento y/o tratamientos térmicos. En este trabajo se presenta un modelo acoplado termo-mecánico-metalúrgico para la simulación del proceso de enfriamiento de una fundición nodular desde la temperatura de austenizado (850-950ºC) hasta la temperatura ambiente, rango en el que se pueden desarrollar distintas transformaciones de fase en estado sólido. Los modelos térmico y mecánico son resueltos en la escala macroscópica (escala de la pieza) por el método de elementos finitos. El modelo metalúrgico es capaz de simular las transformaciones de fase eutectoide (estable y metaestable), ausferrítica y martensítica, teniendo en cuenta los aspectos más relevantes de la microestructura de la fundición nodular. El modelo fue sometido a un estudio de sensibilidad en el cual se consideraron los casos de transformaciones de fase a (a) velocidad de enfriamiento constante y (b) temperatura constante. Para cada caso, se analizó el comportamiento global del modelo y se determinaron las variables de mayor influencia en la microestructura final mediante el cálculo de índices de sensibilidad y diagramas de dispersión. La respuesta del modelo frente a los cambios de los valores de las variables analizadas resultó similar a lo reportado en trabajos experimentales. |
|---|